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Abstract

Important milestones in our researches of auroral

and magnetospheric plasmas for the past quadrennium 1971 -

1975 are reviewed. Many exciting findings, including those

of the polar cusp, the polar wind, the explosive disruptions

of the magnetotail, the interactions of hot plasmas with'

the plasmapause, the auroral field-aligned currents, and

the striking 'inverted-V' electron precipitation events,

were reported during this period. Solutions to major

questions concerning the origins and acceleration of these

plasmas appear possible in the near future. A comprehensive

bibliography of current research is appended to this brief

survey of auroral and magnetospheric plasmas.

i



I. PROLEGOMENON

During the quadrennium preceding 1971 much of the

groundwork, both experimental and theoretical, was

established for the exciting and decisive surveys of auroral

and magnetospheric plasmas of the past several years. From

the experimental point of view, instrumentation suitable for

measurements of the plasmas in planetary magnetospheres

was developed and successfully employed in the terrestrial

magnetosphere -- instruments with great dynamic ranges in

energy, - 1 eV to 50 keV, and with sufficient sensitivities

to adequately cope with these quasi-isotropic, hot plasmas.

Equally important was the introduction of the so-called

'energy-time' spectrograms which allow a candid, three-

dimensional display of the remarkably large and complex

body of plasma measurements acquired with the new-generation

plasma instrumen!tation. Simultaneously with these innovations

detectors capable of measuring the low-density, thermal

plasmas in the magnetosphere and the species compositions

of the hot plasmas were being perfected. On the theoretical

side, a mechanism for a 'polar wind', analogous in spirit to

the principles of the well-known solar wind had been suggest-

ed. Various possible acceleration schemes for the modifica-

tion of distant magnetospheric plasmas to yield the dynamic,



complex precipitation encountered at auroral altitudes were

introduced. Such plausible schemes included quasi-static

electric fields aligned parallel to the geomagnetic field

and rapid pitch-angle scattering of plasmas into the

atmospheric loss cone by various plasma wave-particle

interactions. During this period was also witnessed the

enthusiastic development of magnetospheric dynamical models

assuming the merging of geomagnetic field lines with those of

the interplanetary medium -- and the implications of

these ideas concerning the overall characters of the

auroral and magnetotail plasmas. Concurrently with

these studies the nature of the striking relationships

among the earthward termination of the magnetotail plasma

sheet, the ring-current 'torus', and the plasmasphere

demanded that more comprehensive observations were needed

to resolve the participating mechanisms. Drifts of large

bodies of plasmas in the geomagnetic and geoelectric fields

were already established as a fundamental reality for much

of the magnetospheric domain.

The author has been charged with writing a brief

account of our progress in understanding magnetospheric

plasmas, and their 'foot-prints' as auroral precipitation,

for the quadrennium 1971 - 1975. On!ly the major advances

will be discussed, and these from a point of view not
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necessarily directed toward those vigorously participating

in this research, but a view more appropriate for researchers

in the host of related fields. In the pre-i971 era the

proton distributions comprising the ring current encir-

cling the earth at geocentric racial distances of about

4 to 8 earth radii had already been detected, and their

intimate connection with geomagnetic storms established.

Earthward and approximately contiguous to this ring cur-

rent the high-density, thermal plasma region known as the

plasmasphere was also found to respond with changes in

size and geometry to the occurrence of geomagnetic activity.

At greater distances within the ring current the plasma

sheet on the nightside of earth displayed a conspicuous

termination of electron intensities with a rapid decrease

of average electron energy with decreasing geocentric

radial distances. At still greater distances in the plasma

sheet in the magnetotail a magnetic 'neutral sheet' was

discovered, but the mechanism for solar plasma entry into

the earth's magnetosphere remained unresolved. At low

altitudes of approximately one to several thousand kilometers

the auroral plasmas were found to share at least two com-

mon features with those of the distant magnetosphere -- com-

plex spatial structure and great temporal variability. Zones

of 'hard' electron and proton precipitation into the atmosphere,
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with energies in the tens of keV range, were found

early as well as less energetic, or 'softer', precipitation

regions. These measurements were gained with both rocket-

and satellite-borne instrumentation. Hints of a poleward

zone of magnetosheath plasmas directly impinging upon the

upper atmosphere were evident in several of these observa-

tions, particularly with retrospection. It was apparent

that dedicated studies of both the auroral and magnetospheric

domains with simultaneous plasma-wave, electric and magnetic

field, energetic particle and plasma measurements were

required in order to gain substantial knowledge of the

cornucopia of phenomena lying above the earth's atmosphere.

Much of the promise of this period was fulfilled by the

advances of the past several years. Needless to say,

these advances have given birth to many exciting problems

still unresolved.

It is my intent to discuss here several of the major

advances in our knowledge of magnetospheric and auroral

plasmas of the past several years. This brief survey begins

at auroral altitudes and ends with the vast plasma regimes

of the distant magnetosphere. In terms of the most probable

primal source of most of these plasmas, the solar wind, this

chronological order of the text perhaps appears out of

sequence. However, it is my belief that our observational
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knowledge of the auroral plasmas has advanced significantly

beyond that of their counterparts in the distant magnetosphere,

and thus a presentation first of auroral findings provides

the most effective starting point. A comprehensive bibliography

is appended to this brief review in order to placate my

colleagues and fellow enthusiasts.
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II. THE LOW-ALTITUDE PLASMAS

We begin our discussion of major advances in plasma

researches of the past few years with the meridional sum-

mary of major plasma regimes encountered at low altitudes

as portrayed in Figure 1. By 'low-altitude plasmas' we imply

here all of the diverse plasmas encountered at altitudes of

several hundreds to a few thousands of kilometers above the

earth's surface, which have been studied with rocket- and

satellite-borne instruments. These plasmas are thus not

only those associated with the classical auroral oval, but

those of the polar cap and of equatorial latitudes.

One of the more striking, observational finds at low-

altitudes is that of 'inverted-V' electron precipitation

events at auroral latitudes. An example is given in Figure 2.

The display is a three-dimensional coding necessary for the

proper presentation of the immense quantities of observations

of plasmas currently being gained throughout the earth's

magnetosphere. This form of data presentation is also

extensively used by Heikkila and Winningham and by McIlwain

and DeForest, examples of which will be given here. The

ordinate scale of Figure 2 is electron energy in units of

electron volts and the abscissa is universal time. The

detector responses are color coded from blue to red (low to

high responses) at each point in the E-t plane. A color
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calibration strip for the log 1 0 of the detector response

in counts (sec)- 1 is provided at the right-hand side of the

graph. Often this calibration strip in these E-t spectro-

grams is gray coded. Magnetic invariant latitude (A),

magnetic-field itagnitude (P) at the satellite position, and

corresponding magnetic local time (MLT) are given at the

bottom of the spectrogram. There are three 'inverted-V'

precipitation events evident in the spectrogram of Figure 2

at 0147:50 to 0148:20 U.T., 0148:20 to 0149:00 U.T., and

0149:40 to 0150:10 U.T. These electron precipitation events

are usually characterized by electron average energies

which increase to a maximum energy and subsequently decrease

as the satellite passes through these regions [Frank and

Ackerson, 1972]. The overall features of these precipita-

tion events, together with the observational facts that

low-energy protons are not observed simultaneously and

similar electron structures have not yet been found in the

distant magnetosphere, suggest electron acceleration via

quasi-static electric fields directed parallel to the

geomagnetic field at low or intermediate altitudes. Various

mechanisms for the possible development of these potential

drops along geomagnetic tubes of force have been investigated,

notably those by Kindel and Kennel [1971] and Block [1972a].

There are currently no decisive measurements which provide
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an assessment of the scale length of such potential drops --

possibly hundreds of meters to thousands of kilometers.

Until recently it was thought that the major features of

'inverted-V' events, which precluded a direct interpretation

in terms of parallel electric fields, were the presence of

large electron intensities perpendicular to the geomagnetic

field ('trapped fluxes') and a large low-energy component

well below the average energies of the primary spectrum.

However, Evans [1974] has calculated the expected pitch

angle distributions and energy spectrums for electron

intensities accelerated under such conditions and has

included the secondary electron intensities expected from

a reasonable atmospheric model. His results for an

'inverted-V' spectrum are shown in Figure 3. These results

add further plausibility to interpretations of this electron

precipitation in terms of parallel electric fields [see

also the review by Paulikas, 1971].

The anticipated findings of the direct entry of

magnetospheric plasmas into the dayside polar ionosphere

were reported by Heikkila and Winningham [1971] and Frank

and Ackerson [19711. This region and its distant polar

magnetospheric counterpart are known as the dayside (or

polar) cusp. The term 'dayside magnetospheric cleft' is

also used in the current literature. An example of E-t

spectrograms of electron and proton intensities for a
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polar cusp traversal at low altitudes is given here as

Figure 4. The satellite, ISIS 2, is moving poleward as

a function of Universal Time (see also left-hand side of

Figure 1). The magnetospheric plasmas are first encountered

at 0015:40 U.T. and are evidenced by the dramatic increases

of low energy electrons in the electron (top) spectrogram.

Low energy protons are also present in this region (bottom

spectrogram). The more energetic electron and proton

intensities observed prior to entry into the polar cusp are

typical of precipitation of the large regime of such plasma

trapped within the earth's magnetosphere. The polar

cusp plasma is believed to be positioned on geomagnetic

field lines which are open, or connected, to those of the

interplanetary field in the distant polar magnetosheath.

The width of the polar cusp at these altitudes has been

the subject of some controversy. The width inferred from

the spectrograms of Figure 4 would be at least 50 in

invariant latitude (see also Heikkila and Winningham, 1971).

Plasma and convection electric field observations with

Injun 5 at similar altitudes seem to indicate a typical

width of 20 or 30 [Frank and Ackerson, 1972; Gurnett

and Frank, 1973]. This apparent discrepancy may be intimately

related to the recent discovery of a further plasma
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regime in the distant polar magnetosphere known as the 'plasma

mantle' and also populated with particles of direct magnetosheat

origins [Rosenbauer et al., 1974].

The spatial configuration of the above two plasma

regions, 'inverted-V' events and polar cusp, as projected

onto the earth's ionosphere is both complex and heatedly

controversial. Intimately involved are the correct identifica-

tion of the ionospheric 'footprint' of plasma regions in the

distant magnetosphere, the configurations of the convection

electric fields and of the distant geomagnetic fields, and

the character of energetic electron and proton intensities

with E > 50 keV in the various plasma regions. An attempt

at such a polar projection is given in Figure 5 which is

a further interpretive summary of Figure 1. Comprehensive

plasma measurements appear to reveal the clear signature

of at least two distinct, but contiguous plasma regimes --

a high latitude zone of polar cusp plasmas and 'inverted-V'

bands and a lower-latitude zone of plasma sheet and ring-

current intensities [Frank and Ackerson, 1972]. Convection

is anti-sunward in the poleward region and sunward at

lower latitudes. Approximately coincident with the

reversal of the convection electric fields and with the

common boundary of these two major plasma regions is

located the 'trapping boundary' for more energetic



electrons (E > 45 keV). An example of the relationships

among 'inverted-V' events, plasma sheet precipitation, con-

vection electric fields, trapping boundary and plasmapause

near local midnight is shown in Figure 6 [Gurnett and Frank,

1973]. The overall character of these electric fields

within the two plasma regimes are notably different --

greatly fluctuating within the 'inverted-V' bands and

relatively quiescent in the equatorward plasma sheet precipita-

tion. The magnetic field topology is such that geomagnetic

field lines poleward of the trapping boundary are assumed

'open' to those of the interplanetary medium. This boundary

should be used reservedly in defining the demarcation

between closed and opened field lines since substantial

energetic electron intensities are often encountered on

open field lines as determined with simultaneous electric

field and plasma measurements.

The simplified interpretive diagram of Figure 5

touches on many of the currently active researches of auroral

and polar plasmas. First the question as to whether or not

the geomagnetic field topology is partially open or entirely

closed to the interplanetary medium is not wholly resolved.

In addition Heppner [1972a, 1972b] has concluded that a more

typical picture of convection fields over the polar cap

is one of relatively strong anti-sunward flow via an
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analysis of OGO-6 electric field observations. Heikkila

[1974] has proposed that the high-latitude precipitation

zones on the nightside of the earth are not the relatively

simple convective extensions of the dayside polar cusp as

shown in the lower left-hand panel of Figure 5. Moreover, the

'plasma void' centered over the polar cap has been shown

convincingly to be filled with weak intensities of low-

energy electrons which become intense and highly structured

during periods of geomagnetic activity [Winningham and

Heikkila, 1974]. These electron intensities give rise to an

interpretive problem in that these polar-cap field lines

have been often assumed to correspond to those of the lobes

of the magnetotail, regions which are notably empty of

measurable plasmas. Despite the many disparate interpretations

of the large body of available plasma observations in terms

of magnetospheric topology, of plasma entry into the

magnetosphere, and of electron acceleration there have been

great strides in gaining relatively consistent surveys of

electron and proton precipitation over the auroral zones

and polar caps.

Our knowledge of the overall temporal behavior of

these precipitation regions has been advanced with a com-

prehensive study of OGO-4 plasma measurements by Hoffman

and Burch [1973]. Their results are summarized in Figure 7

for various phases of polar magnetic substorms. Quiet
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magnetic conditions are characterized by the persistent

presence of polar cusp and plasma sheet intensities. As

the interplanetary field turns southward, the auroral

plasmas respond with an equatorward motion of the dayside

polar cusp and increased precipitation from the plasma sheet

in the local evening sector. During the expansion phase

of the substorm intense precipitation features are encountered

over the nightside aurora. Then, as the recovery of the

substorm activity accompanies the northward turning of the

interplanetary field, plasma sheet and polar cusp precipita-

tion returns to the more polar positions typical of

quiescent periods and a broad electron precipitation zone,

'the mantle aurora', spreads through the local morning

sector. More such plasma studies, including simultaneous

surveys of convection patterns, VLF emissions and energetic

particles, need be available in the literature before

convincing assessments of the origins and acceleration

mechanisms can be achieved. This particular study is an

excellent beginning for further comprehensive treatment of

observations of auroral plasmas.

Important new findings concerning the character of the

field-aligned, or Birkeland, currents originally detected

with low-altitude satellite magnetometer measurements by Zmuda

and his coworkers have added great impetus to analyses of this
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phenomenon which is central to the issue of ionosphere-

magnetosphere coupling. Simultaneous observations with

rocket-borne magnetometers and plasma analyzers have

provided much of our new insight [Choy et al., 1971,

Cloutier et al., 1973). Generally speaking, the magnetic

perturbations associated with these currents are of the

order of several hundreds of gammas, and typical currents

are some tens of microamperes per square meter. An example

of rocket-borne measurements of field-aligned currents

in the vicinity of an auroral arc is given in Figure 8.

Electron intensities precipitating into the atmosphere

are sufficient to account for the upward flowing field-

aligned current. The particles comprising the downward

current, low-energy ions or electrons with energies less than

tens of electron volts, have remarkably eluded detection

by both rocket- and satellite-borne plasma analyzers.

The positions of field-aligned currents in 'inverted-V'

precipitation events are worthy of note. For example,

such currents are found either at the boundaries of the

'inverted-V' events, or interspersed throughout these

precipitation regions as indicated by the anisctropies

summarized in Figure 9 for the events of Figure 2 [cf.

Berko, 1973]. These currents appear to be located

adjacent to, rather than directly within, the
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maxima of precipitation (or bright arcs). However,

magnetometer measurements were not gained simultaneously

with these plasma observations. The study of field-aligned

currents is still severely limited by the present unavailability

of simultaneous magnetic field and plasma observations from

low-altitude satellites.

Are the primal origins of the magnetospheric and

auroral plasmas the solar wind or the terrestrial ionosphere?

It is difficult to neglect the fact that the earth is sur-

rounded by a great sheath of turbulent plasma -- its

magnetosheath. The plasma densities and particle energies

encountered in the plasma sheet, the polar cusp and other

environs of the distant magnetosphere continually guide us

to an often unconscious conclusion that the particle source,

distinct from the power supply, is the solar wind. Recent

low-altitude observations of the composition of positive ions

precipitating into the auroral zone suggest that at least part

of these plasmas can be attributed to the ionosphere. Shelley,

Sharp and Johnson [1972] have reported the convincing dis-

covery of large intensities of energetic oxygen ions during

geomagnetic storms. A exemplary set of observations is

given in Figure 10. These oxygen ions are found well

equatorward of the 'trapping boundary', and hence populate

closed field lines. The peak differential intensities at
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L ~ 3 to 4 are nontrivial in terms of intensities of ions

found at the equator -- in fact these intensities are

comparable to those of the ring current at these energies.

Perhaps the occasional findings of large intensities of

low-energy protons (ions) and electrons at yet lower latitudes

are also intimately related to this as yet largely un-

explorered ionospheric participation [cf. Heikkila, 1971].

It is a matter of obvious importance that such measurements

be gained in the immense plasma reservoirs near the equator

in order to quantitatively access the ionosphere's con-

tributions to these plasmas. Accordingly, we must not

lose sight of the fact that the bulk of our present observa-

tions of auroral and magnetospheric ion intensities have

been gained with energy-per-unit-charge analyzers which

require a minimum of satellite resources and are capable of

comprehensive and rapid energy scans but do not identify

unambiguously the ion species.

Banks and Holzer [1968] investigated the consequences

of open magnetic field lines over the earth's polar cap

with regard to hydrogen and oxygen ions of the ionosphere.

The results of these calculations showed that there should

be an outward flow of hydrogen ions along these field lines,

which is strikingly similar in many respects to the expansion

of the solar corona and subsequent development of the solar
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wind. Appropriately Axford [1968] referred to this flow of

ions from the polar ionosphere as 'the polar wind'

In situ measurements of such flow are more difficult tha

those of the solar wind -- ion energies are in the electron-

volt range and the signature of upward flow of hydrogen

ions relative to the oxygen ions must be resolved. J. Hoffman

and his coworkers [1974] have recently confirmed the

existence of this polar wind with measurements with an

ion mass spectrometer on ISIS 2. An example of these

observations is given in Figure 11. The viewing

geometry for the ion mass spectrometer is shown at

the top of Figure 11, and the corresponding responses

of the instrument to hydrogen ions and singly-ionized

oxygen atoms are summarized in the lower panel. The clear

displacement of the hydrogen and oxygen ion peaks as

functions of the spin phase of the satellite can be inter-

preted in a relatively straightforward manner as an upward

expansion, or wind, from the polar ionosphere. These

measurements are of great interest not only from the view-

point of loss of ions from the terrestrial ionosphere, but

also in terms of the supply of thermal ionospheric plasmas

into the hot plasmas of the distant magnetosphere and the

implications concerning magnetospheric topology. Compre-

hensive surveys of this polar wind at auroral and polar
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latitudes are awaited with anticipation of their contribu-

tions to discerning the dynamics of the ionosphere and

distant magnetosphere.

There is a recent instrumental advance which should

significantly aid our interpretations of auroral plasmas

in the next few years -- auroral imaging from orbiting

satellites. Such imaging will allow comprehensive, sim-

ultaneous monitoring of all, or a major fraction of, the

auroral and polar auroras while single-point analyses of

plasmas are gained along the trajectory of the satellite.

Thus temporal and spatial variations observed along the

spacecraft orbit may be resolved without the prohibitive

use of a large, multi-satellite mission. The feasibility

of such global auroral imaging has been amptly demonstrated

with auroral imaging devices on ISIS 2 and a defense

satellite [cf. Lui et al., 1973; Shepherd et al., 1973;

Pike and Whalen, 19741.
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III. THE MAGNETOSPHERIC PLASMAS

The distant magnetosphere is awesome in size and

temporal variability in terms of discerning 
magnetospheric

dynamics with a single, though well-equipped 
satellite.

Significant topological changes of the magnetosphere 
are

known to occur on the time scale of minutes; yet the typical

periods of satellite orbits through these regions 
are

measured in days. Irregardless of this unavoidable dis-

advantage, substantial progress has been gained toward

understanding the origins and dynamics of the immense plasma

domains of the terrestrial magnetosphere. A summary of one

possible magnetospheric topology which is 
consistent with

most of our current knowledge of these plasmas is offered

in Figure 12. The principal features of this topological

model are (1) merging of geomagnetic and interplanetary

magnetic field lines in the vicinity of the dayside polar

cusp, (2) convection of these field lines with their 
plasmas

along the flanks of the magnetosphere into the distant

plasma sheet, (3) reconnection of magnetic field lines along

a 'neutral line' in the magnetotail accompanied by injection

of plasma onto these newly closed field lines 
in the plasma

sheet and (4) subsequent convection of plasma towards

earth and adiabatic motion of plasmas in the geomagnetic

and geoelectric fields as the plasmapause is approached.
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This model is suggested here as a viable alternative to

that proposed by Heikkila [1974]. Both models are similar

in many respects. The primary disparity lies in the role

of the polar cusp in magnetospheric dynamics. In Heikkila's

model, the polar cusp is severely limited to the dayside

polar magnetosphere: plasma entry into the distant magneto-

sphere is accomplished by diffusion through the boundaries

of the polar cusp. Analyses of recent observations in the

earth's polar magnetosphere will soon probably resolve

this crucial issue.,

The long anticipated discovery of the direct entry

of solar plasmas into the earth's magnetosphere in the

vicinity of the dayside, high-latitude neutral points was

accomplished by the satellite IMP 5 which enjoyed very

fortuitous crossings of the polar magnetosphere on the

inbound portions of its highly elliptical orbit. The

geometry of the dayside polar cusp as deduced from these

early observations for periods of relative magnetic

quiescence is summarized in Figure 13. The position of

the polar cusp is responsive to the occurrence of

magnetic storms and moves rapidly equatorward at the onset

of magnetic activity (cf. Russell et al. [1971] and Figure 7

of present review). The polar cusp is a persistent feature

of the polar magnetosphere [Frank, 19711 and appears to be
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rich in plasma wave phenonema [Fredricks et al., 1972].

Recently a new plasma region was found with a polar

orbiting satellite, HEOS 2, at latitudes beyond the ca-

pabilities of the IMP-5 orbit. This region, also endowed

with magnetosheath plasmas, is located inside the polar

magnetopause and downstream from the dayside polar cusp.

It is appropriately called 'the mantle' [Rosenbauer et al.,

1974]. These plasmas have not been included in the sum-

mary of Figure 12, as their relationships with the magneto-

tail are still unclear.

In the early years of exploration of the plasma

sheet in the magnetotail, we viewed this great plasma

reservoir as a relatively placid, persistent feature. Compre-

hensive plasma measurements in this region over the past several

years have shown that this is a grossly incorrect impression.

Hones and his coworkers have mounted an extensive analysis

of the temporal behavior of the plasma sheet during magnetic

storms at approximately 18 RE (RE , earth radii) with plasma

instrumentation on the Vela satellites [cf. Hones et al.,

1973; Hones 1972a,b] . A summary of these findings is

given in Figure 14. At the onset of the expansion phase of

the substorm the plasma sheet thickness decreases dramatical-

ly. Plasma flow at the satellite position (V) is directed

tailward. This tailward flow continues through the expansive



22

phase of the substorm. Then, at the beginning of the re-

covery phase, the plasma sheet thickens and the plasma flow

is now earthwards -- strongly suggesting that plasma is also

being injected deep into the magnetosphere. These observations

are interpreted in terms of a line of reconnection lying between

earth and the spacecraft during the expansion phase and

rapidly moving beyond the satellite to a position further

in the magnetotail during recovery. This valuable con-

tribution to our knowledge of the dynamics of the magnetotail

would be greatly amplified if simultaneous measurements of

magnetic fields were available. The above conclusions

advanced by Hones are supported at least in part with

measurements of plasma flows with other satellites in the

magnetotail. An example of simultaneous determinations of

plasma flow at two positions in the plasma sheet with IMP's

6 and 7 is shown in Figure 15. IMP 6 was positioned at

25 to 30 RE geocentric radial distances in the local evening

sector of the plasma sheet; IMP 7 moved slowly through the

dawn sector at about 34 RE during this period of observations.

During periods of relative magnetic quiescence, plasma

flows are typically 10 to 100 kilometers (sec)- 1 and directed

more or less randomly (Vx is earthward; V toward local
x y

dawn). At the onset of the substorm at about 2200 U.T. the

plasma sheet abruptly disappears at the position of the
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IMP-6 satellite which is several earth radii above the

expected position of the neutral sheet, and explosive

tailward jetting of plasma at speeds ranging from 100 to 200

-l
kilometers (sec)- I is observed at IMP 7. Formation of a

line of reconnection or the triggering of a large-scale

instability at radial distances less than 20 PE? Further

detailed studies of such plasma flows with simultaneous

measurements of the magnetic fields must be employed to

resolve this fundamental issue.

The plasma which flows earthward during the violent

disruptions of the magnetotail accompanying magnetic sub-

storms penetrates to and beyond geostationary satellite

positions at 6.6 RE in the ring current. At the geostationary

orbit of ATS 5 McIlwain has employed electrostatic analyzers

to gain comprehensive measurements of the motions of these

ions and electrons in the geomagnetic and geoelectric fields

[McIlwain, 1972; 1974]. E-t spectrograms of electron and

proton intensities encountered for a 48-hour period are

presented in Figure 16. The pitch angles sampled in this
o o

spectrogram range from 10 to 30 . (Note here that white

denotes high intensities and black, low intensities, and
-i

that the energy scales are proportional to (E + 3 ke)- .)

The satellite's daily encounter with the electron edge of

the nightside plasma sheet is clearly evident at about 0400
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to 0500 U.T. in these spectrograms. McIlwain concludes that

these plasma structures are reformed with each substorm and

employs their charge and energy dependences to construct

models of the geoelectric field in the vicinity of the

satellite, an advantage not enjoyed in the magnetotail due

to the variability of those much weaker magnetic fields.

Such observations of plasmas at the geocentric orbit are

also essential for critical analyses of the growth and

decay of the 'classical' ring current. Analysis of these

measurements has proceeded in scope to the identification of

times for plasma injections during large magnetic substorms

with an accuracy of about 10 minutes [Kamide and McIlwain,

1974].

Contiguous to these hot plasmas of the ring current

and plasma sheet within the nightside magnetosphere lie

the high-density thermal plasmas of the plasmasphere. Our

early concept of the outer surface of the plasmasphere,

the plasmapause, was one of a relatively smooth surface with

an outward extension, or bulge, at local evening. Recent

measurements of the plasmaspheric ions have readily dispel-

led this oversimplified concept. Observations of ion

densities in the plasmasphere and beyond have been reported

by Chappell [1972b; 1974]; several of these measurements

for various local-time sectors of the magnetosphere are
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summarized in Figure 17. The remarkable finding is one of

highly structured ion profiles with radial distance, both

inside the plasmasphere and outside the plasmapause within

+the prlcmatrougich [cf. 'Tylnr Pt al.. 1711. These structures,

or more accurately 'detached plasmas', are expected to play an

important role in stimulating pitch angle and energy dif-

fusion of the more energetic plasmas of the ring current

and plasma sheet and thus also in their precipitation into

the auroral zone [Cornwall et al., 1970, 1971]. Williams and

his coworkers have applied this suggestion to their compre-

hensive measurements of ring-current proton distributions in the

vicinity of the plasmapause during the recovery phase of

magnetic storms [cf. Williams and Lyons, 1974]. Their

results support moderate pitch angle scattering by ion

cyclotron waves in the region where the ring current inter-

acts with the thermal plasmas of the plasmasphere. This

interaction also occurs at L-values corresponding to those

at or very near midlatitude red arcs, and hence is sug-

gested as the energy source for these dim, but fascinating

arcs. No unassailable identification of the plasma, possibly

low-energy electrons, directly energizing these midlatitude

emissions is available in the literature. There is one

persistent feature that is again stressed by these observa-

tions and others throughout the magnetosphere -- the strong

interaction, or coupling, between earth's magnetosphere and

her ionosphere.
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IV. EPILOGUE

This past quadrennium has seen a substantial progress

in understanding the nature of the major plasma domains

which play critical roles in the dynamics of the magnetosphere:

the plasma sheet and its earthward extension as 'the ring

current', the p±asmasphere, the polar cusp, the polar wind,

and the diverse auroral plasmas including the striking

'inverted-V' events. It is of interest here to briefly

predict goals and achievements of the next quadrennium.

First, considerably more effort will be expended in analyses

of plasma wave-particle interactions, the ubiquitous

presence of which is suggested by current researches in such

areas as anomalous resistivity in sustaining parallel

electric fields, merging and reconnection of magnetic field

lines, precipitation of magnetospheric plasmas into the

auroral zones, interaction of ring-current plasmas with the

plasmasphere, and many others. Instrumentation on many

current satellites will allow substantial progress in this

area. We should also encounter significant progress in

discerning the mechanisms responsible for field-aligned

currents and the participation of these currents in the

coupling of the magnetosphere and the ionosphere. Global

surveys of the polar wind and of the species compositions

of hot auroral and magnetospheric plasmas will define more
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clearly the contributions of the ionosphere to the large

bodies of plasmas found in the distant magnetosphere.

Significant advances are forthcoming in the area of con-

vection electric fields over the polar and auroral

ionospheres -- many of these from in situ observations of

ion drifts. Missions into the distant polar magnetosphere

will firmly establish the role that the polar cusp plays

in supplying magnetosheath plasmas into the magnetotail.

And, hopefully, the plasma in the distant magnetosphere,

which is to be associated with 'iniverted-V' precipitation

events, will be identified. Great promise in overcoming

such obstacles as the immense sizes and temporal variabilities

of the magnetospheric and auroral plasma domains is offered

by dual satellite missions and by global auroral imaging.

The next quadrennium indeed promises to be exciting and

rewarding in terms of researches into auroral and magneto-

spheric plasmas.
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Figure Captions

Figure 1. Meridional cross-section of the earth's

magnetosphere in the vicinity of earth,

which shows the major plasma regimes en-

countered at local noon and midnight.

Figure 2. E-t spectrogram of electron intensities

precipitating into the local evening

sector of the auroral zone as observed

with Injun 5. This series of measurements

provides several good examples of 'inverted-

V' precipitation events (after .Frank and

Ackerson [1972]).

Figure 3. Model electron energy spectrum computed

by assuming a 400-volt potential difference

along a magnetic field line and an unenergized

Maxwellian electron distribution with tempera-

-3
ture of 800 eV and density 5 (cm)-3. The

data are taken from an 'inverted-V' electron

spectrum reported by Frank and Ackerson

[1971] (after Evans [1974]).

Figure 4. E-t spectrograms of electron and proton

intensities for a crossing of the polar

cusp with the low-altitude satellite ISIS 2.

The satellite passes out of the more energetic
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plasmas on closed field lines into the low-

energy plasmas of the polar cusp at ap-

proximately 0015:40 U.T. The angle ep is

the pitch angle for each spectral scan

(after Dyson and Winningham [1974]; see

also Heikkila and Winningham [1971]).

Figure 5. An interpretive diagram for the auroral zones

and polar cap, including the low-altitude

signatures of plasma in the distant magneto-

sphere, the major convection zones, and the

field topology (after Frank and Ackerson

[1972]).

Figure 6. The electric fields and precipitated electron

energy fluxes observed over the auroral zones

near local midnight with the low-altitude

satellite Injun 5 (after Gurnett and Frank

[1973]).

Figure 7. Polar plots in the coordinates invariant

latitude (A) and magnetic local time (MLT),

which summarize the electron precipitation

patterns for the five substorm phases (after

Hoffman and Burch [1974]).

Figure 8. A possible current system including four

Birkeland currents and an eastward electrojet

that is capable of reproducing the magnetic
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field changes observed during the rocket flight.

The electrojet, Birkeland currents, and

visible arc extend horizontally perpendicular

to the plane of the figure. The position of

the southern visible arc inferred from Fort

Yukon all-sky photographs and photometer

data was within the southernmost region of

downward current, moving from the southern

to northern edges in the time interval 180-

220 sec. The northern arc was less intense

than the southern arc near the end of the

flight but may have been associated with the

northern region of upward current (after

Cloutier et al. [1973].

Figure 9. Field-aligned anisotropies within the

'inverted-V' events of Figure 2. The field

aligned electron intensities, J(se = 0 ) /

J(ev = 90 ) > 1, are an upward directed cur-

rent. Typically the most energetic portions,

or centers, of these events are not favored

with field-aligned intensities.

Figure 10. Observations of energetic 0+ ions with an

ion mass spectrometer on satellite 1969-25B

during a traversal of the northern hemisphere

on March 24, 1969 (after Sharp et al., 1974).
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Figure 11. An example of observations of the polar wind

with ISIS 2. Bottom panel gives the roll

modulation curves for H+ and 0+ concentrations.

The angle e is the angle between the ram

direction due to satellite motion and the

instrument field of view. If the two ion

species have merely thermal velocities the

roll modulation maximums will coincide both

in time and with the ram direction. If one

species (H+ , in this case) has a bulk velocity

its maximum will be shifted away from the ram

direction. This bulk velocity of H+ is the

signature of the polar wind. Typical velocities

at these altitudes are several kilometers
-i

(sec) (after Hoffman [1974]; see also

Hoffman et al., 1974).

Figure 12. A diagram of the relationship of various

plasma regions in the distant magnetosphere.

Figure 13. A diagram showing the geometry and location

of the polar cusp within the polar magnetosphere

in the noon meridional plane during periods

of relative magnetic quiescence. The co-

ordinates are geocentric radial distance R

and dipole magnetic latitude Xm . The polar
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cusp intersects the auroral zone at A " 79 .

Several sample trajectories of IMP 5 through

the dayside magnetosphere are also shown

(after Frank [1971c]).

Figure 14. Schematic representation of plasma sheet

behavior during a substorm: (a) The plasma

sheet may thin gradually for some tens of

minutes before breakup (signified by T = 0).

The question marks indicate that Vela measure-

ments have as yet not identified any character-

istic pattern of flow during such periods of

gradual plasma loss. The solid arrow B1 and

the dashed arrows suggest the possible role

that the interplanetary field may play in this

(and the subsequent two) epoch(s). (b) The

field line reconnection (star) starts some-

where earthward of the Vela satellite (V)

at T = 0. Very rapid flow of plasma earthward

and tailward from the neutral line begins. A

Vela satellite more than - 1 RE from the neutral

sheet encounters a rapid reduction of plasma

intensity to background at this time. A

rapid tailward flow of the disappearing plasma

is quite typically encountered. (c) Recon-
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nection continues near the site of its initial

onset throughout the expansive phase of the

substorm. (d) The reconnection region sud-

denly moves much farther tailward as substorm

recovery begins. Earthward of the reconnection

region the plasma sheet becomes much thicker,

and the reappearing plasma flows very rapidly

earthward (after Hones et al. [1974]).

Figure 15. Plasma flows at two positions in the plasma

sheet prior to and during a magnetic sub-

storm. IMP 6 is in the evening sector of

the plasma sheet at geocentric radial distances

25 to 30 RE for this period of observations.

IMP 7 is in the morning sector at 34 RE

Note the strong antisunward streaming of

plasma at IMP 7 during 2200 to 2300 U.T.

(after Frank et al. [1973]).

Figure 16.. E-t spectrograms of proton and electron

intensities at the geostationary orbit of

ATS 5 for a period of 48 hours. (Note that

the proton energy scale is inverted

relative to that for electrons.) The pitch

angles sampled for this period of observations

ranged from 10 to 30 (after McIlwain [1974]).



35

Figure 17. A composite figure showing the change in the

location of the detached plasma regions with

respect to the plasmapause and magnetopause.

At dusk the regions are located at the

plasmapause. At earlier local times the

regions are found farther away from the

plasmapause, as is shown by the different

cases. The shaded area covers the general

location of the detached regions (after

Chappell [1974]).
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